comparison of mlp and rbf neural networks performance for estimation of broiler output energy

نویسندگان

سما عمید

دانشگاه محقق اردبیلی ترحم مصری گندشمین

دانشگاه محقق اردبیلی غلامحسین شاهقلی

دانشگاه محقق اردبیلی

چکیده

energy management is one of the main ways of the efficient use of energy resources. the prediction of crop yields based on energy inputs can help farmers and policymakers to estimate the level of production. required data for study were randomly collected from 70 broiler farms in north west of iran. the input energies were included human labour, machinery, fuel, feed and electricity and the output produced energies were considered as output variables. the multi-layer perceptron (mlp) and the radial basis function (rbf) neural networks were applied for prediction of output energies of broiler production. according to the comparison results obtained from the indices of the coefficient of determination (r2), root mean square error (rmse) and the mean absolute error (mae) performance of the ann-rbf model better than ann-mlp model was estimated. in evaluating the effects of inputs on outputs of production, the production of fossil fuel showed the highest sensitivity among the production inputs in both models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study of MLP and RBF Neural Networks for Estimation of Suspended Sediments in Pari River, Perak

Estimation of suspended sediments in rivers using soft computing techniques has been extensively performed around the world since 1990’s. However, accuracy in the results was always found to be highly desired and a profound crucial task. This study presents a thorough comparison between the performances of best basis function of Radial Basis Functions (RBF) and the best training algorithm in Mu...

متن کامل

Application of Two Methods of Artificial Neural Network MLP, RBF for Estimation of Wind of Sediments (Case Study: Korsya of Darab Plain)

The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...

متن کامل

a comparison of linguistic and pragmatic knowledge: a case of iranian learners of english

در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...

15 صفحه اول

Output feedback control of nonlinear systems using RBF neural networks

An adaptive output feedback control scheme for the output tracking of a class of continuous-time nonlinear plants is presented. An RBF neural network is used to adaptively compensate for the plant nonlinearities. The network weights are adapted using a Lyapunov-based design. The method uses parameter projection, control saturation, and a high-gain observer to achieve semi-global uniform ultimat...

متن کامل

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023